$\mathrm{Br}_{\mathrm{eq}}-\mathrm{Te}-\mathrm{C}_{\mathrm{eq}} 97 \cdot 1(3)^{\circ} \mathrm{J}$. The molecules are held together by a single intermolecular secondary bond [3.713 (1) \AA] between the Te atoms and the axial bromine atoms of adjacent pairs of molecules to give loose dimers.

The remaining tribromides all attain square-based pyramidal geometry at the tellurium atom by means of bridging bromine atoms. The geometries of the CTeBr_{4} units are closely comparable in the three compounds but whereas the title compound adopts a polymeric chain structure, the presence of an ethoxy substituent on the phenyl ring in tribromo(4-ethoxyphenyl)tellurium apparently leads to a dimeric structure (although the corresponding trichloride is polymeric). This structure is also adopted by the cyclohexene compound. None of these square-based pyramidal structures show significant secondary bonding because the 'vacant' coordination site at the tellurium atom is occupied by the lone pair. In the biphenylyl compound a secondary $\mathrm{Te} \cdots \mathrm{Br}$ bond can be formed as a vacant site remains in the tellurium coordination sphere. In this case the bulky biphenylyl group \{with the second phenyl ring, not directly attached to the Te atom, making a close approach to the Te atom $[\mathrm{Te} \cdots \mathrm{C}=$ 2.945 (9) $\AA]\}$ would appear to prevent a fourth bromine atom fully entering the tellurium coordination sphere, but it allows very asymmetric bridging by a bromine atom, with one primary $\mathrm{Te}-\mathrm{Br}$ bond $[2.675(1) \AA]$ and one secondary $\mathrm{Te} \cdots \mathrm{Br}$ bond [3.713 (1) \AA]. The other examples all have almost symmetrical μ-bromo bridges with a mean $\mathrm{Te}-\mu-\mathrm{Br}=$ $2.90 \AA$.

On the evidence so far gathered (Table 3), the preferred structure for $R \mathrm{TeBr}_{3}$ compounds appears to be that with bridging halogen atoms giving rise to square-based pyramidal geometry with oligomeric or dimeric structures. However, when a bulky organic group is present the trigonal bipyramidal geometry predicted by simple VSEPR is adopted.

We thank SERC for a post-doctoral fellowship (WDH).

References

Alcock, N. W. (1970). In Crystallographic Computing, edited by F. R. Ahmed. Copenhagen: Munksgaard.
Alcock, N. W. \& Harrison, W. D. (1982a). Acta Cryst. B38, 1809-1811.
Alcock, N. W. \& Harrison, W. D. (1982b). J. Chem. Soc. Dalton Trans. pp. 251-254.
Alcock, N. W. \& Harrison, W. D. (1982c). Unpublished work.
Bird, P. H., Kumar, V. \& Pant, B. C. (1980). Inorg. Chem. 19, 2487-2493.
Hazell, A. C. (1972). Acta Chem. Scand. 26, 1510-1516.
Knobler, C. \& McCullough, J. D. (1977). Inorg. Chem. 16, 612-615.
Kobelt, D. \& Paulus, E. F. (1971). Angew. Chem. Int. Ed. Engl. 10, 74-75.
McCullough, J. D. \& Knobler, C. (1976). Inorg. Chem. 15, 2728-2731.
Stewart, J. M. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1982). B38, 2679-2681

trans-Dichlorobis(triphenylphosphine)palladium(II)

By George Ferguson, Robert McCrindle, Alan J. McAlees and Masood Parvez

The Chemistry Department, The University of Guelph, Guelph, Ontario, Canada N1G 2W 1
(Received 27 January 1982; accepted 4 May 1982)

Abstract

C}_{36} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}, M_{r}=701 \cdot 19\), triclinic, $P \overline{1}$, $a=9.690$ (2), $b=10.325$ (2), $c=9.194$ (1) \AA A, $\alpha=$ $91.38(1), \beta=111.94(1), \gamma=72.51(1)^{\circ}, V=$ $809.71 \AA^{3}, Z=1, D_{c}=1.44 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=356$, Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu($ Mo $K \alpha)=8.5$ cm^{-1}. The structure was solved by the heavy-atom method and refined by full-matrix least-squares calculations to a final R of 0.024 for 4343 independent observed reflections $[I>3 \sigma(I)$]. The crystal structure contains centrosymmetric, square-planar $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ molecules with Pd-Cl 2.290 (1), Pd-P 2.337 (1) \AA, and $\mathrm{Cl}-\mathrm{Pd}-\mathrm{P} 92.0$ (1) ${ }^{\circ}$.

Introduction. In the course of studies of solvates of trans- $\mathrm{Pd}(\mathrm{Cl})\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (Ferguson, McAlees, McCrindle, Parvez \& Roberts, 1982) we were surprised on interrogating the Cambridge Crystallographic Database to find no structure determination for trans- $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (1). As we had available a plentiful supply of crystals of (1) grown from acetonitrile, we undertook its X-ray analysis to determine precise values for the $\mathrm{Pd}-\mathrm{P}$ and $\mathrm{Pd}-\mathrm{Cl}$ bond lengths.

A crystal $0.50 \times 0.35 \times 0.25 \mathrm{~mm}$ was used for data collection with an Enraf-Nonius CAD-4 diffractometer. Following preliminary photographic studies, ac-
curate unit-cell data and the crystal-orientation matrix were determined from a least-squares refinement of the setting angles of 25 reflexions with $10<\theta<15^{\circ}$. Intensity data were collected by the $\theta / 2 \theta$ scan method using monochromatic Mo $K \alpha$ radiation. The intensities of three reflexions, chosen as standards, were monitored every hour of exposure time and showed no significant variation. Intensities for 4493 reflexions were measured of which 4343 had $I>3 \sigma(I)$ and were used in structure solution and refinement. Data were corrected for Lorentz-polarization factors and for absorption. Maximum and minimum values of the transmission coefficients are 0.831 and 0.723 respectively.

The structure was solved by the heavy-atom method. Initial refinement (Sheldrick, 1976) by full-matrix least-squares calculations with isotropic temperature factors lowered R to 0.095 which then dropped to 0.032 after four rounds of full-matrix refinement with anisotropic vibration parameters. The top 15 peaks ($0.3-0.6 \mathrm{e} \AA^{-3}$) of a difference map computed at this stage corresponded to the 15 H atoms in the asymmetric unit; these were then included but not refined in subsequent refinement cycles in geometrically idealized positions ($\mathrm{C}-\mathrm{H} 0.95 \AA$) and an overall isotropic thermal parameter was refined for H . In the final rounds of calculations a weighting scheme of the form $w=1 /\left(\sigma^{2} F+p F^{2}\right)$ was employed where the final p parameter refined to 0.0025 . Scattering factors used in the calculations were taken from

Table 1. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$: final fractional coordinates $(\mathrm{P}$ and $\left.\mathrm{Cl} \times 10^{5}, \mathrm{C} \times 10^{4}\right)$ and $\bar{U}\left(\AA^{2} ; \mathrm{Pd}, \mathrm{Cl}\right.$ and $\mathrm{P} \times 10^{4}$, C $\times 10^{3}$), with estimated standard deviations in parentheses

	x	y	z	\bar{U}^{*}
	x	y	0	$293(1)$
Pd	0	0	0	
Cl	$15473(5)$	$8668(5)$	$20630(5)$	$504(2)$
P	$21012(4)$	$-19362(3)$	$2080(4)$	$325(2)$
$\mathrm{C}(11)$	$4075(2)$	$-1893(2)$	$1348(2)$	$41(1)$
$\mathrm{C}(12)$	$5094(2)$	$-1862(3)$	$613(3)$	$74(1)$
$\mathrm{C}(13)$	$6581(3)$	$-1789(3)$	$1551(5)$	$103(2)$
$\mathrm{C}(14)$	$7060(3)$	$-1775(3)$	$3114(5)$	$90(2)$
$\mathrm{C}(15)$	$6030(3)$	$-1763(3)$	$3858(3)$	$68(1)$
$\mathrm{C}(16)$	$4549(2)$	$-1829(2)$	$2967(2)$	$53(1)$
$\mathrm{C}(21)$	$1979(2)$	$-3409(1)$	$1144(2)$	$39(1)$
$\mathrm{C}(22)$	$548(2)$	$-3368(2)$	$1195(2)$	$51(1)$
$\mathrm{C}(23)$	$436(3)$	$-4476(3)$	$1912(3)$	$73(1)$
$\mathrm{C}(24)$	$1713(3)$	$-5640(2)$	$2523(2)$	$76(1)$
$\mathrm{C}(25)$	$3101(3)$	$-5676(2)$	$2478(3)$	$75(1)$
$\mathrm{C}(26)$	$3273(3)$	$-4561(2)$	$1817(3)$	$62(1)$
$\mathrm{C}(31)$	$2117(2)$	$-2390(2)$	$-1701(2)$	$41(1)$
$\mathrm{C}(22)$	$2426(2)$	$-3724(2)$	$-2090(2)$	$55(1)$
$\mathrm{C}(33)$	$2433(3)$	$-4011(2)$	$-3574(3)$	$76(1)$
$\mathrm{C}(34)$	$2194(3)$	$-2961(3)$	$-4642(2)$	$80(1)$
$\mathrm{C}(35)$	$1884(3)$	$-1648(3)$	$-4282(2)$	$79(1)$
$\mathrm{C}(36)$	$1845(3)$	$-1345(2)$	$-2799(2)$	$64(1)$
		$* \dot{U}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right)$.		

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$

$\begin{array}{ll} \mathrm{Pd}-\mathrm{Cl} & 2 \cdot \\ \mathrm{Pd}-\mathrm{P} & 2 \cdot 3 \end{array}$	$2 \cdot 290$ (1)	$\mathrm{C}(21)-\mathrm{C}(22) \quad 1.3$	1.383 (3)
	$2.337 \text { (1) }$	$\mathrm{C}(21)-\mathrm{C}(26) \quad 1.3$	1.388 (2)
		$\mathrm{C}(22)-\mathrm{C}(23) \quad 1.3$	1.390 (2)
$\mathrm{P}-\mathrm{C}(11) \quad 1.819$ (2)		$\mathrm{C}(23)-\mathrm{C}(24) \quad 1.3$	1.382 (4)
$\mathrm{P}-\mathrm{C}(21) \quad 1.820$ (1)		$\mathrm{C}(24)-\mathrm{C}(25) \quad 1.3$	1.351 (4)
$\mathrm{P}-\mathrm{C}(31) \quad 1.810$ (1)		$\mathrm{C}(25)-\mathrm{C}(26) \quad 1.3$	1.395 (3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.397 (2)	$\mathrm{C}(31)-\mathrm{C}(32)$	1.386 (2)
$\mathrm{C}(11)-\mathrm{C}(16)$	$1 \cdot 390$ (2)	C(31)-C(36)	1.391 (2)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.399 (3)	$\mathrm{C}(32)-\mathrm{C}(33)$	1.391 (2)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.336 (5)	C(33)-C(34)	1.387 (3)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.403 (5)	$\mathrm{C}(34)-\mathrm{C}(35)$	1.359 (4)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.383 (3)	$\mathrm{C}(35)-\mathrm{C}(36)$	1.403 (3)
$\mathrm{Cl}-\mathrm{Pd}-\mathrm{P}$	92.0 (1)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	16) 119.5 (2)
		$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	13) 118.3 (2)
$\mathrm{Pd}-\mathrm{P}-\mathrm{C}(11)$	118.1 (1)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	14) 122.3 (3)
$\mathrm{Pd}-\mathrm{P}-\mathrm{C}(21)$	110.7 (1)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	15) $\quad 119.9$ (2)
$\mathrm{Pd}-\mathrm{P}-\mathrm{C}(31)$	112.1 (1)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	16) 119.2 (2)
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	104.0 (1)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	15) $\quad 120.7(2)$
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	104.8 (1)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	(26) 119.4 (1)
$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	106.3 (1)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	23) 119.9 (2)
		$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	(24) 120.4 (2)
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$	121.0 (1)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	(25) 119.5 (2)
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(16)$	119.3 (1)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	26) 121.3 (2)
$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(22)$	118.8 (1)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	(25) 119.4 (2)
$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(26)$	121.8 (1)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(36)$	36) 119.3 (1)
P-C(31)-C(32)	123.0 (1)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	33) 120.3 (2)
$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(36)$	117.7 (1)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	34) $\quad 119.6$ (2)
		C(33)-C(34)-C(35)	(35) $\quad 120.7$ (2)
		$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	36) 120.1 (2)
		$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(35)$	(35) $\quad 119.9$ (2)

Cromer \& Mann (1968) and Stewart, Davidson \& Simpson (1965) and allowance was made for anomalous dispersion (Cromer \& Liberman, 1970). Refinement converged with $R=0.024$ and $R_{w}=$ $\left(\sum w \Delta^{2} / \sum w F_{o}^{2}\right)^{1 / 2}=0.032 .^{*}$ A final difference map was devoid of significant features. The final fractional coordinates and their standard deviations are in Table 1 and details of molecular dimensions are in Table 2.

Discussion. The crystal structure consists of discrete molecules (Fig. 1) separated by normal van der Waats distances. The $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ molecule lies on a crystallographic inversion centre and the $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ moiety is consequently trans and planar.

The $\mathrm{Pd}-\mathrm{P}$ and $\mathrm{Pd}-\mathrm{Cl}$ bond lengths are compared in Table 3 with dimensions from other $\mathrm{PdCl}_{2}(L)_{2}$ systems ($L=$ phosphine ligand) obtained via the Cambridge Database. The $\mathrm{Pd}-\mathrm{Cl}$ [2.290(1) A] and $\mathrm{Pd}-\mathrm{P}$ [2.337 (1) \AA] distances in (1) are in the middle of the ranges of values 2.267 (9)-2.326 (4) \AA and $2 \cdot 310$ (5)2.388 (6) \AA given in Table 3 for $\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{P}$ distances respectively.

[^0]

Fig. 1. A molecule of trans- $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$. The phenyl-ring C atoms are numbered sequentially $\mathrm{C}(i 1)-\mathrm{C}(i 6)(i=1,2,3)$. For clarity only one atom in each ring is numbered. $\mathrm{C}(i 1)$ is bonded to P.

Table 3. Bond lengths (\AA) in trans-dichlorobis(phosphine)palladium complexes

L in trans $-\mathrm{PdCl}_{2} L_{2}$	$\mathrm{Pd}-\mathrm{Cl}$	Pd-P	Reference
$\begin{aligned} & \mathrm{PPh}_{3} \\ & \left(\mathrm{Bu}^{t}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\left(\mathrm{Bu}^{t}\right)_{2} \end{aligned}$	2.290 (1)	2.337 (1)	This work (1)
	2.291 (5)	2.388 (6)	
	2.305 (6)	2.380 (6)	
	2.302 (5)	2.372 (6)	
	2.305 (6)	2.374 (6)	
$\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CClCF}_{3}$	2.291 (1)	2.322 (1)	(2)
PMe_{2} (neo-menthyl)	2.304 (5)	2.344 (4)	(3)
	2.297 (5)	2.361 (5)	
PMe_{2} (menthyl)	2.296 (9)	$2 \cdot 310$ (5)	(3)
	2.267 (9)		
$\left(\mathrm{Bu}^{\prime}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{P}\left(\mathrm{Bu}^{\prime}\right)_{2}$	2.316 (5)	2.379 (4)	(4)
	2.287 (5)	2.376 (4)	
	2.302 (4)	2.370 (4)	
	2.326 (4)	2.378 (4)	
$\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{CH}_{2} \mathrm{PPh}_{2}$	2.311 (2)	2.326	(5)
	2.293 (2)	2.322	

References: (1) Al-Salem, McDonald, Markham, Norton \& Shaw (1980); (2) Taylor, Jacobson \& Carty (1975); (3) Kan, Miki, Kai, Yasuoka \& Kasai (1978); (4) McDonald (1979); (5) Bachechi, Zambonelli \& Venanzi (1977).

The small distortion of the $\mathrm{Cl}-\mathrm{Pd}-\mathrm{P}$ angle from 90° [to $92.0(1)^{\circ}$] is undoubtedly a consequence of intramolecular crowding effects. Thus, the phenyl-ring C atom (C11) comes close to eclipsing the Cl atom

Itorsion angle $\mathrm{Cl}-\mathrm{Pd}-\mathrm{P}-\mathrm{C}(11) 16.0(2)^{\circ}$] and $\mathrm{Pd}-$ $\mathrm{P}-\mathrm{C}(11)\left[118.1(1)^{\circ}\right]$ is considerabily larger than the other $\mathrm{Pd}-\mathrm{P}-\mathrm{C}$ angles $\left[110.7\right.$ and $112 \cdot 1(1)^{\circ}$]. As is commonly found in PPh_{3} complexes, the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles are all less than tetrahedral [$\left.104 \cdot 0-106 \cdot 3(1)^{\circ}\right]$. The orientations adopted by the phenyl rings $\mathrm{C}(21)-$ $\mathrm{C}(26)$ and $\mathrm{C}(31)-\mathrm{C}(36)$ are such that an ortho proton on each ring is directed towards the Pd atom but the distances $[\mathrm{Pd} \cdots \mathrm{H}(22) 2 \cdot 92, \mathrm{Pd} \cdots \mathrm{H}(36) 3.22 \AA]$ are too great for any significant interaction. The remaining dimensions [mean P-C 1.816 (1), C-C 1.384 (4) \AA] are normal and in accord with accepted values.

GF and RMcC are grateful to NSERC (Canada) for Grants in Aid of Research.

References

Al-Salem, N. A., McDonald, W. S., Markham, R., Norton, M. C. \& Shaw, B. L. (1980). J. Chem. Soc. Dalton Trans. pp. 59-63.
Bachechi, F., Zambonelli, L. \& Venanzi, L. M. (1977) Helv. Chim. Acta, 60, 2815-2823.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Ferguson, G., McAlees, A. J., McCrindle, R., Parvez, M. \& Roberts, P. J. (1982). In preparation.

Kan, K., Miki, K., Kai, Y., Yasuoka, N. \& Kasai, N. (1978). Bull. Chem. Soc. Jpn, 51, 733-740.

McDonald, W. S. (1979). Acta Cryst. B35, 3051-3052.
Sheldrick, G. M. (1976). SHELX. A program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Taylor, N. J., Jacobson, S. E. \& Carty, A. J. (1975). Inorg. Chem. 14, 2648-2653.

Acta Cryst. (1982). B38, 2681-2683

Structure of Bis[hydroxolead(II)] 5,5'-Azotetrazolediide

By Melanie A. Pierce-Butler
Propellants, Explosives and Rocket Motor Establishment (PERME),* Waltham Abbey, Essex EN9 1BP, England

(Received 9 November 1981; accepted 15 May 1982)

Abstract

PbOH}]^{+} . \mathrm{C}_{2} \mathrm{~N}_{10}^{2-}\), triclinic, $P \overline{1}, a=$ 4.3604 (4), $b=7.4214$ (6), $c=7.5016$ (9) $\AA, \alpha=$ 101.31 (1), $\beta=96.97$ (2), $\gamma=109.19$ (1) ${ }^{\circ}, V=$ $220.24 \AA^{3}, M_{r}=612.484, Z=1, D_{c}=4.62 \mathrm{Mg} \mathrm{m}^{-3}$.

^[* Formerly ERDE.]

Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu(\mathrm{Mo} K \alpha)=$ $38.53 \mathrm{~mm}^{-1}$. Final $R=0.055$ for 959 unique reflections. In the $[\mathrm{Pb}(\mathrm{OH})]^{+}$complex ion each lead atom is coordinated to three oxygen atoms, and each oxygen atom to three lead atoms, thus forming an infinite ladder-like chain. The azotetrazolide anion adopts a trans conformation about the $\mathrm{N}=\mathrm{N}$ bond.

[^0]: * Anisotropic thermal parameters, calculated H -atom coordinates and structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36881 (22 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

